How Linkerd Transforms Code into
Running Software

By Tarun Pothulapati

About Me

e I’m Tarun Pothulapati &«

One of the Maintainers of Linkerd, which is a
CNCF Incubated Service Mesh Project.

Currently, Working at Buoyant.

Prev: Intern at CNCF, working on Linkerd.
Primarily writes Golang, with some Rust recently.
Find me at tarun.xyz

Automated Testing, Building and Deployment

e Increases Developer Velocity.

e Helps you ship with Confidence.

e Removes the failure points between writing code
and deployment.

e Automate mundane stuff.

e Streamlined Delivery Process.

CI/CD for OSS e Stakeholders are across

companies and

- timezones.
PrOJeCtS e Standardized processes

>>> Individual Magic.
P.S: It’s even more e Reduce burden on

important Maintainers.

5 LINKERD sk

Ultralight, ultrafast, security-first ‘Qsco’ Webex
service mesh for Kubernetes.

. . EVERQUOTE
4+ years in production

5,000+ Slack channel members
10,000+ GitHub stars

200+ contributors

Weekly edge releases L

Open governance, neutral home
ne’r.
™) CLOUD NATIVE

COMPUTING Walmart
L= FOUNDATION

GeSpotCheck

Microsoft

SO

Arttest . fommerce CHASE O

"
comeast Clover ebay

@bxpedia 19oinect (3 GoDaddy

Ladbrokes &

Mercedes-Benz

norosTrRoM OfferUp ((Ottawa
STRAVA susserc: [transit:

‘e And many more...
XBOX

Linkerd 2.x architecture

Pluggable
Ingress

a Plane

Service

Service

- ™
N1LINKERD
Sarvice Mesh
(e
CLI > o
3
N o
©
S
ey -
=
o]
Browser
-

Requirements

e Should accommodate docker, kubernetes and other container
technologies.

e Integrates well with existing GitHub primitives 1i.e
Checks, events, etc.

e Uses a simpler authn and authz model.

e A pipeline apps Ecosystem to re-use commonly needed
workflow logics i.e docker push, etc.

e Builds on the same mantra of everything done in the Open.

GitHub Actions

Workflows New workflow

All workflows

Workflows o

Qo Static checks

A configurable automated
process made up of
multiple jobs

@o Unit tests

Builds

What happens when you
raise a PR?

Static Checks + Unit
Tests + Integration
Tests

Invoked for all pull
requests.

e Unit Tests + Release

Release Workﬂow e Invoked for tag pushes

Code -> Artifacts

Static Checks

Static checks

static_checks.yml

on: pull_request

1}

@ Golint 3m 365
e - '*.md’

o forma
- '**/*'md‘

@ Proto diff 425

- main

@ shellcheck

@ PSScriptAnalyzer 1m 7s

@ Markdown lint

@ Chart readme diff check

Unit Tests

unit_tests.yml|

on: pull_request

@ Go unit tests

@ S unit tests

Unit tests

1}

- '*,md’
- '**/*'md’

- main

Integration Tests

integration_tests.yml
on: pull_request

Matrix: docker_build

0 0000O0O0O0CO

Docker build (proxy)

Docker build (controller)

Docker build (metrics-api)

Docker build (web)

Docker build (cni-plugin)

Docker build (debug)

Docker build (cli-bin)

Docker build (grafana)

Docker build (jaeger-webhook)

Docker build (tap)

1m 19s

@ Static CLI tests (windows) 3m 16s

Matrix: integration_tests

O 00 000O0O0CO0O0O0CO

Integration tests (cluster-domain)

Integration tests (deep)

Integration tests (external-issuer)

Integration tests (external-prometheus-deep)

Integration tests (external-resources)

Integration tests (helm-deep)

Integration tests (helm-upgrade)

Integration tests (multicluster)

Integration tests (uninstall)

Integration tests (upgrade-edge)

Integration tests (upgrade-stable)

Integration tests (cni-calico-deep)

6m 2

16m 2

8m 9s

18m 43s

6m

19m

55s

55s

20s

29s

55s

30s

Docker Builds

Linkerd involves multiple components of which some of
them get individual Dockerfiles.

Bash Scripts are available to make docker builds simpler
both for the User and CI.

GitHub Action Cache 1is used to speedup builds by caching

layers and reusing them across the branches hierarchy
meaning external PR’s can re-use main’s cache giving them

a first-class experience.
Docker BuildKit further improves build performance.

All Docker 1images are also published as PR artifacts

Github Action Artifacts

Artifacts
Produced during runtime

e TImages are packaged
into a zip file and are
published as Action
artifacts.

e These images can be
loaded into a
Kubernetes cluster by
using a helper script. tarun in dev in on kind-kind () linkerd2 on ¥ tarun/ext-hint-anchors [$?] via ® v1.15.4

° Makes it easy for users > ./bin/install-pr 5436
who can’t run the whole
build process locally.

Name Size

[0
o
Ch

@ image-archives

[43) .
&

Spinning Up Kubernetes Clusters

Linkerd uses k3d as the default kubernetes distribution
to run integration tests.

Integration tests written in Golang take no dependency on
the k8s dist, which means underlying k8s dists can always
be swapped.

Most of these distributions have a way to load locally
built images into the cluster. "./bin/image-load script
makes it further easier.

LN J

func TestInstallSP(t *testing.T) {

Written in Golang’ InVOked cmd := []string{"diagnostics", "install-sp"}

out, err := TestHelper.LinkerdRun(cmd)

if err != {
from BaSh testutil.AnnotatedFatal(t, "'linkerd install-sp' command failed", err)

}
out, err = TestHelper.KubectlApply(out, TestHelper.GetLinkerdNamespace())
if err != {
testutil.AnnotatedFatalf(t, "'kubectl apply' command failed",
"'kubectl apply' command failed\n%s", out)

e Integration tests are
written in Golang.

e These are always

invoked from Bash with soe
sane defaults, which e
can be overr“i dden . local filename=$1

shift
e Same bash scripts are

used by CI and User.

printf 'Test script: [%s] Params: [%s]\n' "${filename##*/}" "

GO111MODULE=on go test --failfast --mod=readonly "$filename" inkerd="$linkerd_path" --helm-
P d . . t t path="$helm_path" --k8s-context="$context" --integration-tests "$@" || exit
roviding a consisten }
experience to replicate FUnLdeephtest)d
. local tests=()
CI failures locally. run_test "$test_directory/install_test.go"

while IFS= read -r line; do tests+=("$line"); done <<< "$(go list "$test_directory"/.../...)"
for test in "${tests[@]}"; do

run_test "$test"
done

000
#!/usr/bin/env bash

bindir=$(cd "${BASH_SOURCE[0]%/*}" && pwd)

"$bindir"/_test-helpers.sh
handle_tests_input "$@"

if [-n "$test_name"]; then

start_test "$test_name"
else

printf ' RUNNING ALL TESTS
Note: cluster-domain, cni-calico-deep and multicluster require a specific cluster configuration and
are skipped by default\n\n'

for test_name in "${default_test_names[@]}"; do
start_test "$test_name"
done

if [$exit_code -eq 1; then
printf '\n=== PASS: all tests passed\n'
else
printf '\n=== FAIL: at least one test failed\n'
ik

exit $exit_code
ifitt

=
A4

tarun in dev in on kind-kind () linkerd2 on ¥ tarun/ext-hint-anchors [$?] via % v1.15.4
> ./bin/tests --name multicluster /home/tarun/linkerd2/target/cli/1linux-amd64/linkerd

Integration tests

=1}

- '*. md’
- ')k /% md'

- main

Release

release.yml
on: push

Matrix: docker_build
@ Docker build (proxy)
° Docker build (controller)
@ Docker build (metrics-api)
@ Docker build (web)
@ Docker build (cni-plugin)
@ Docker build (debug)
@ Docker build (cli-bin)
@ Docker build (grafana)
@ Docker build (jaeger-webhook)

@ Docker build (tap)

13m4is

7m 5ds

14m37s

im3s

8m 24s

Matrix: integration_tests
@ Integration tests (cluster-domain)
@ Integration tests (deep)

° Integration tests (external-issuer)

(-] gration tests ({ I-p h
@ Integration tests (helm-deep)

@ Integration tests (helm-upgrade)
° Integration tests (uninstall)

@ Integration tests (upgrade-edge)
° Integration tests (upgrade-stable)

@ Integration tests (cni-calico-deep)

@ ARM64 integration tests 13m (s

@ Static CLI tests (windows) 2m 32

Sm31s

6m 34s

'm s

15m 58

@ Pack Chocolatey release 2m 47

@ Create GH release

@ Linkerd website publish

@ Helm chart deploy

3s

@ Linkerd website publish c... 2m3:

Release Workflow

Includes the same docker builds and Integration Tests.
Some of the Integration Tests are also ran on a external
ARM cluster. (The CI ssh’s into the ARM VM in a cloud
provider and runs the same scripts)

Binaries are published into GitHub Releases and
Chocolatey (Windows)

Helm Charts are deployed into a GCP Bucket (Waiting for
GH Packages to support Helm Charts)

Website is updated about the release.

Only thing done by the maintainer 1is to send out the
release announcements ;)

GitHub Packages

@ 11 packages

@

@

@

@

@

@

@

@

Proxy edge-21.3.3
Published 3 days ago by Linkerd

proxy-init v13.9
Published on Feb 17 by Linkerd

controller edge-21.33
Published 3 days ago by Linkerd

web edge-2133
Published 3 days ago by Linkerd

grafana edge-2133
Published 3 days ago by Linkerd

cni-plugin edge-21.3.3
Published 3 days ago by Linkerd

debug edge-21.33
Published 3 days ago by Linkerd

tap edge-21.3.3
Published 3 days ago by Linkerd

metrics-api edge-21.33
Published 3 days ago by Linkerd

cli-bin edge-2133
Published 3 days ago by Linkerd

@ Jjaeger-webhook edge-2133

Published 3 days ago by Linkerd

¥ 6130k

1€
5
~

&

3250k

1270k

&

1170k

&

¥ 102

¥ 548k

¥ 101k

¥ 793

+ 260k

+ 195k

GitHub Container Registry (ghcr)

e No need to manage external registry secrets.
0SS projects don’t have to worry about paying and
managing the ownership of the External Registry.

e Supports Multi-Arch

e For Linkerd, The migration from GCR(Google Container
Registry) to GHCR just worked and was a very simple
change.

- controllerImage: gecr.io/linkerd-io/controller

+ controllerImage: ghcr.io/linkerd/controller

Tips and Suggestions

Cache Docker Builds: Use Github Actions cache

Embraze Parallelism: by dividing integration tests 1into
independent jobs that can run across clusters.

Use a lightweight Kubernetes distribution like Kind or
K3d.

Use a powerful language to write the tests, and then
abstract them with Bash or Makefile, to make them user
friendly and CI logic simpler.

Use GitHub Action artifacts to publish build artifacts to
reduce local builds.

Tips and Suggestions (Contd)

e Use GitHub Annotations to make debugging test failures

easier in the CI.
e Embrace GitHub Packages Registry. It just works and goes

well with most 0SS projects.

Using External Tools

All external tools have
relevant scripts under
"./bin’ to retrieve and
run them.

This means that the CI
has no expectations on
the environment.

If the binary is
available, It will use
it otherwise the script
retrieves a specific
version.

tarun in in on linkerd2 on
./bin -I "docker-*" -I "test-*" -I "_x"

o000

#!/usr/bin/env sh

set -eu

k3dversion=v3.4.0

bindir=$(cd "${0%/*}" && pwd)

targetbin=$(cd "$bindir"/.. && pwd)/target/bin
k3dbin=$targetbin/.k3d-$k3dversion

if [! -f "$k3dbin"]; then

if ["$(uname -s)"
os=darwin
arch=amd64

elif ["$(uname -0)" = Msys]; then
os=windows
arch=amd64

else
os=linux
case $(uname -m) in

x86_64) arch=amd64 ;;
arm) arch=armé64 ;;
esac

i

Darwin]; then

mkdir -p "$targetbin”

via ¥ v1i.15.4

curl -sfL -o "$k3dbin" https://github.com/rancher/k3d/releases/download/$k3dversion/k3d-$os-$arch

chmod +x "$k3dbin"
fi

"$k3dbin" "$@"

Resources:

Linkerd’s GitHub
Thank You. Workflows

Linkerd’s Build docs
Questions? Linkerd’s Test Docs
Linkerd’s Release Docs

