
How Linkerd Transforms Code into
Running Software

By Tarun Pothulapati

About Me

● I’m Tarun Pothulapati 👋
● One of the Maintainers of Linkerd, which is a

CNCF Incubated Service Mesh Project.
● Currently, Working at Buoyant.
● Prev: Intern at CNCF, working on Linkerd.
● Primarily writes Golang, with some Rust recently.
● Find me at tarun.xyz

Automated Testing, Building and Deployment

● Increases Developer Velocity.
● Helps you ship with Confidence.
● Removes the failure points between writing code

and deployment.
● Automate mundane stuff.
● Streamlined Delivery Process.

CI/CD for OSS
Projects

P.S: It’s even more
important

● Stakeholders are across
companies and
timezones.

● Standardized processes
>>> Individual Magic.

● Reduce burden on
Maintainers.

Ultralight, ultrafast, security-first
service mesh for Kubernetes.

🔥 4+ years in production
🔥 5,000+ Slack channel members
🔥 10,000+ GitHub stars
🔥 200+ contributors
🔥 Weekly edge releases
🔥 Open governance, neutral home

And many more...

Linkerd 2.x architecture

Requirements

● Should accommodate docker, kubernetes and other container
technologies.

● Integrates well with existing GitHub primitives i.e
Checks, events, etc.

● Uses a simpler authn and authz model.
● A pipeline apps Ecosystem to re-use commonly needed

workflow logics i.e docker push, etc.
● Builds on the same mantra of everything done in the Open.

GitHub Actions

Workflows
A configurable automated

process made up of
multiple jobs

 Builds
● Static Checks + Unit

Tests + Integration
Tests

● Invoked for all pull
requests.What happens when you

raise a PR?

Release Workflow
Code -> Artifacts

● Unit Tests + Release
● Invoked for tag pushes

Static Checks

Unit Tests

Integration Tests

Docker Builds

● Linkerd involves multiple components of which some of
them get individual Dockerfiles.

● Bash Scripts are available to make docker builds simpler
both for the User and CI.

● GitHub Action Cache is used to speedup builds by caching
layers and reusing them across the branches hierarchy
meaning external PR’s can re-use main’s cache giving them
a first-class experience.

● Docker BuildKit further improves build performance.
● All Docker images are also published as PR artifacts

Github Action Artifacts

● Images are packaged
into a zip file and are
published as Action
artifacts.

● These images can be
loaded into a
Kubernetes cluster by
using a helper script.

● Makes it easy for users
who can’t run the whole
build process locally.

Spinning Up Kubernetes Clusters

● Linkerd uses k3d as the default kubernetes distribution
to run integration tests.

● Integration tests written in Golang take no dependency on
the k8s dist, which means underlying k8s dists can always
be swapped.

● Most of these distributions have a way to load locally
built images into the cluster. `./bin/image-load` script
makes it further easier.

Written in Golang, Invoked
from Bash

● Integration tests are
written in Golang.

● These are always
invoked from Bash with
sane defaults, which
can be overridden.

● Same bash scripts are
used by CI and User.
Providing a consistent
experience to replicate
CI failures locally.

Release

Release Workflow

● Includes the same docker builds and Integration Tests.
● Some of the Integration Tests are also ran on a external

ARM cluster. (The CI ssh’s into the ARM VM in a cloud
provider and runs the same scripts)

● Binaries are published into GitHub Releases and
Chocolatey (Windows)

● Helm Charts are deployed into a GCP Bucket (Waiting for
GH Packages to support Helm Charts)

● Website is updated about the release.
● Only thing done by the maintainer is to send out the

release announcements ;)

GitHub Packages

GitHub Container Registry (ghcr)

● No need to manage external registry secrets.
● OSS projects don’t have to worry about paying and

managing the ownership of the External Registry.
● Supports Multi-Arch
● For Linkerd, The migration from GCR(Google Container

Registry) to GHCR just worked and was a very simple
change.

Tips and Suggestions

● Cache Docker Builds: Use Github Actions cache
● Embraze Parallelism: by dividing integration tests into

independent jobs that can run across clusters.
● Use a lightweight Kubernetes distribution like Kind or

K3d.
● Use a powerful language to write the tests, and then

abstract them with Bash or Makefile, to make them user
friendly and CI logic simpler.

● Use GitHub Action artifacts to publish build artifacts to
reduce local builds.

Tips and Suggestions (Contd)

● Use GitHub Annotations to make debugging test failures
easier in the CI.

● Embrace GitHub Packages Registry. It just works and goes
well with most OSS projects.

Using External Tools

● All external tools have
relevant scripts under
`./bin` to retrieve and
run them.

● This means that the CI
has no expectations on
the environment.

● If the binary is
available, It will use
it otherwise the script
retrieves a specific
version.

Thank You.
Resources:

● Linkerd’s GitHub
Workflows

● Linkerd’s Build docs
● Linkerd’s Test Docs
● Linkerd’s Release Docs

Questions?

